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In recent years, theoretical glaciologists have derived a complete and highly credible model 
for ice masses. The model is based on standard conservation laws of physics as well as 
measured constitutive relations of ice. In this model, mechanical and thermal effects interact 
through nonlinear creep response laws, and the end product is a system of nonlinear partial 
differential equations with a free boundary condition. This model is easy enough to relate, but 
is probably intractible, analytically, and is far from trivial, computationally. This paper 
describes our strategy for solving a restricted, but nevertheless informative case: the uniaxial, 
cold, shallow, steady-state ice sheet with an idealized geometry. The authors believe that theirs 
is the first solution of the fully coupled equations. The details of a particular ice sheet com- 
putation are given, and qualitative implications are drawn. The computations go far toward 
settling some controversies in the glaciology literature, and bring to light questionable aspects 
of the “shallow ice” approximation. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Recent years have witnessed the emergence of a reasonably complete thermo- 
mechanical theory for cold glaciers and ice sheets. This theory, stemming from 
important precursory work by Lliboutry, Nye, Weertman, and others (see citations 
in Paterson [30], or Hutter [15]) has found its most complete expression to date 
in studies by Fowler and Larson [7, 8, 91, Hutter and associates (Hutter 
[13, 14, 151, Hutter and Alts [16], Hutter and Vulliet [19], Hutter and others, 
[18]), and Morland and associates (Morland [27], Morland and Johnson 
[25, 261, Morland and Smith [27], Morland and others [28]). The ultimate goal 
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is the determination of the temporal evolution of the ice sheet geometry and the 
associated temperature and velocity distributions. The theory is based on the fun- 
damental physical laws of conservation of mass, momentum, and energy as well as 
constitutive relations summarizing laboratory experimentation on stress response 
behavior of isotropic polycrystalline ice. To these “field equations” are augmented 
some fairly indisputable boundary assumptions as well as somewhat disputable 
basal sliding laws. These ice mass equations turn out to couple thermal and 
mechanical effects through a rate function in the creep response law for stress, and 
the resulting model is a system of relatively formidable nonlinear partial differential 
equations which, to the best of our knowledge, is not subject to standard analytic 
solution techniques. Several authors (e.g., Morland and Smith [27]) have argued 
that the thermal component is significant: A model that does not couple the heat 
effects with the stresses is suspect. 

There are a good many other computational glaciology studies in the literature. 
The closest in spirit to ours is Morland and Smith [27], who have computed the 
profile and ice fluid velocity of a steady-state ice sheet under the assumption that 
the temperatures are prescribed. There is another computational avenue which 
attempts to model ice masses with more realistic physical geometries based on 
actual measurement. Such realism has forced these investigators to use much more 
simplified models; such models have no pretense of being based entirely on laws of 
physics. A good example of this avenue is the study of the South Cascade Glacier in 
the state of Washington, reported by Hodge [ 111. His two dimensional model only 
accounts for the flow velocities and height, the temperature field being taken as 
prescribed. Another idealization, following Nye [29], includes a shape-factor 
parameter, its role being to approximately account for the three dimensionality of 
the flow, as in Paterson [30]. Our estimation is that this and similar (e.g., Hooke et 
al. [ 121) realistically inspired, physically simplified studies are valuable con- 
tributions to the computational attack on ice dynamics. When an inclusive com- 
putational methodology incorporating the strict physical modelling prescription of 
the present study is finally melded with finite-element procedures which, like 
Hodge’s, can account for existing ice mass geometries, we will have come to a 
major milepost in theoretical glaciology. For the present, our inclinations are con- 
sonant with Fowler [6], p. 4431, who says, 

In seeking the simplest realistic model of glacier flow, an attractive procedure is to analyse a 
given set of equations and boundary conditions in a mathematically consistent fashion, rather 
than make physically plausible, but nevertheless ad hoc, assumptions and approximations. 

A companion paper [ 181 for an audience of research glaciologists stresses the 
modelling implications of our findings. We believe that together, these sister papers 
constitute a significant advance in the state of understanding of current glacier 
models. More generally, we hold that these sister papers constitute a fine example 
of the symbiosis of physical modelling and computation: The sophistication of the 
model required us to push to the forefront of computational practice. Com- 
putational discoveries forced us to consider important but nevertheless neglected 
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aspects and limitations of the widely accepted “shallow ice” approximation. We 
believe our results are significant and would have been unattainable without 
genuine interdisciplinary cooperation. 

The plan of the paper is the following: Section 2 summarizes the Morland-Hutter 
model for a grounded, steady-state uniaxial ice sheet. The discretization of that par- 
tial differential equation model is described in Section 3, which elaborates on com- 
putational difficulties encountered, and our devices for overcoming them. Attention 
is given to numerical stability issues. Section 4 describes the results of a com- 
putational case study, and the concluding portion (Sect. 5) sketches ways in which 
we think our understanding of ice sheet dynamics has been enhanced by synthesis 
of physical and numerical analysis. 

The vision which motivated our research effort is nicely encapsulated in an 
editorial introduction by Malcolm Mellor to Morland [23]. He states, 

Over the past few decades, understanding of the mechanics of ice and frozen soils has 
developed by piecemeal investigation of material properties, and by ad hoc application of con- 
ventional engineering mechanics to particular problems. Now, with increased motivations, 
resources, and basic knowledge, the time may be ripe for development of more general and 
rigorous theory and for greater professional involvement by applied mathematicians and 
theoretical mechanicians. 

In the editorial following the above excerpt, Morland [23] noted that full 
solution had only been attained for temperature-independent ice response. We 
believe that our announcement (Yakowitz et al. [33]) and the present detailed 
study are the first to give a successful numerical procedure of the complete coupled 
thermomechanical free surface model. 

Radok [31], in his Scientzjk American article on antartic ice, has described how 
new technology (radar and other remote sensing devices) has revolutionized ice 
sheet measurement. Toward the end of the article, he set the stage for the line of 
inquiry of the present paper by stressing that modelling efforts are needed to see 
how results of various studies “lit together to yield a comprehensive picture of East 
Antarctic ice and its environment.” He observes the need for “models encompassing 
both the thermodynamics and dynamics of ice sheets,” and notes that such models 
are the key toward scientific extrapolation regarding predictions of effect of 
antarctic ice on the global climate system and relevance to the “greenhouse effect,” 
for instance. 

In a more general vein, we are conscious that we are partaking of a fascinating 
historical moment, promised to us by Bellman, Ulam, Von Neumann, Wiener, and 
others, in which nonlinear modelling of complex systems is becoming feasible. Of 
course, the catalyst here is computer technology and methodology. For example, 
pleading in Scientzjk American for increased support for mathematical sciences, 
even on the basis of national self-interest, David [4] writes: 

One of the most promising current directions in fundamental mathematics is the continued 
development of the mathematical model. Mathematical modeling of natural phenomena is 
hardly new. Nevertheless, advances in numerical analysis and the development of the com- 
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puter have made it possible to simulate processes in ways that are much more complex and 
more realistic than ever before. Mathematical modeling in partnership with the computer is 
rapidly becoming a third element of the scientific method co-equal with the more traditional 
elements of theory and experiment. 

From examples offered in the above citations (weather prediction, nuclear winter, 
meteorology), one sees that hydroscience subjects are central, and understanding of 
ice masses will be a vital ingredient. Aside from its importance, glacier theory would 
seem to be a realm of fluid mechanics which is nicely suited to computer 
exploration, as we seek to show here. 

2. THE ICE SHEET EQUATIONS 

Our computational aim in this paper is to “solve” a restrictive but nevertheless 
important subclass of Morland-Hutter models. The subclass we speak of is the two- 
dimensional steady-state cold shallow ice sheet. For simplicity in our exposition 
and calculations, we will assume that it lies on a flat plane, and that there is no 
basal drainage. However, such effects could easily have been incorporated. This 
model is significant in that it has also served as a starting point for other 
investigators working from first principles. For example, Morland and Smith [27] 
have used it to argue that the effect of temperature on the profile and velocity field 
is significant. To illustrate this point, they prescribe various plausible temperature 
patterns and solve the resulting (uncoupled) mechanical equations numerically. 
Fowler and Larson [8,9] also prescribe temperatures in undertaking stability 
analysis of this model (with advection ignored) by “control space” tests and thereby 
conclude that the glacier differential equation model is stable. This approach avoids 
head-on numerical solution, but is not entirely conclusive. Their final paragraph is: 

Finally we remark that, of course, the inclusion of heat transport terms would lend the con- 
clusion of this paper a great deal more authority. Such an inclusion, however, appears to ren- 
der the problem almost intractable analytically, and numerical methods for such a double free 
boundary problem are beset with similar difficulties. 

Morland [24] has set forth a very complete model with specific experimentally 
motivated choices for boundary conditions and for functions in the constitutive 
relations. We now relate these equations, giving only the scantiest justification and 
invite the reader to consult Morland [24] and Morland and Smith [27] for further 
details of the full derivation. The monograph by Hutter [15] also derives these 
equations (Chaps. 3 and 5), but does not offer specific choices of parameters and 
boundary conditions. On the other hand, Hutter’s [15] derivation of the model is 
complete: The path from physical laws and laboratory measurements to the 
equations for ice masses is carefully marked out, as is the rationale behind the 
shallow ice approximation used in the Morland-Hutter models. 

The setting for the equations is the Cartesian x-z plane with the transverse base 
of the glacier running in the x direction, and its height, at a particular position X, 
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being the position H(x) in the z direction, as shown in Fig. 1. The dependent 
variables which we propose to approximate numerically are the internal tem- 
perature and internal horizontal, and vertical velocities, which are denoted by T= 
T(x, z), U= U(x, z), and W= W(x, z), respectively. Also, we are to find the free sur- 
face profile H(x). The field equations for these objects, all scaled appropriately and 
dimensionless, to the right of the ice divide, are: 

Ice sheet differential equations. 

Uz = a(T) g(7), 

u,= -w,, 

lTzz = UT, + WT, - a(T) q(7). 

Free surface dyferential equation. 

(2.1) 

(2.2) 

(2.3) 

UH’- W= A(x, H). (2.4) 

The stress 7 = 7(x, z) in (2.1) and (2.3) is determined by the free boundary height 
and slope according to 

7(x, z) = - H’(x)(H(x) -z), (2.5) 

where here and elsewhere, the prime denotes the derivative of a univariable 
function. 

We briefly discuss these equations. The first (Eq. (2.1)) is a constitutive relation, 
the “creep response law,” a(T) and g(r) being laboratory-determined functions 
known respectively as the rate- and creep-response functions. The actual parameters 
of these functions, as prescribed by Morland [24] and Morland and Smith [27], 
are given in Table I. The second relation, (Eq. (2.2)), represents mass conservation 
under the assumption that ice is incompressible. Equation (2.3) for temperature is 
an energy balance relation. The second-order term on the left represents heat dif- 
fusion, the first order terms in T account for convection, and the final term 
represents internal energy dissipation. The prescribed constants /I and the 
parametric functions a(T) and q(7) are offered in Table I. The constants a, fi, and E 
in that table are determined by the physical scales of a given ice sheet; for details 
see, our companion paper [ 181. 

5c.e; 

XL xryo XR x 

FIG. 1. Coordinates for uniaxial ice sheet model. 
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TABLE I 

Functions and Parameters for Morland Realization of Ice Sheet Model 

(a) Ice Sheet Functions 

Rate function in (2.1) 

a(T)=a,eb1r+a2eb2r 

a, = 0.1242, b, = 11.9567, 
az = 0.3438, bz = 2.9494. 

Creep response function in (2.1) 

g(s) = 2rw(W), 

o(x) = 0.3336 + 0.3200x +0.02963x2. 

Creep response function in (2.3) 

47) = w(7). 

Accumulation function in (2.4) 

12S(H- H,(x)), H<H, 
A(x, H(x)) = I 12S(H- H,(x))- 76(H- H.(x))* + 136(H- H,(x))‘, H,< H< H,+O.25 

H > H. + 0.25, ( H,(x)> 
where 

H,(x) = 0.5( 1 -0.1x). 

Thermal frux in (2.7) 

G(x) = 1. 

Sliding law in (2.8) 

-e2H 
ur(H, H’)=- 

P&(H)’ 

19.79 + 54.43(H(x) - 1.3), 

Surface temperature” in (2.9) 

TJx, H(x)) = -0.1 - 0.5H(x). 

(b) Ice Sheet Parametersb 

e* = 2.75. 10-6, a = 0.5, 

e = 9.01 10-2, /I = 0.02. 

For sliding law 

p. = - 53.596, /I, = 26.753, 

p, = 253.643, p4 = 176.028, 
p2 = - 324.134, ps = - 72.761, 

jlr,r=4.15. 10-s. 

0 < H(x) Q 0.7 

0.7 < H(x) < 1.3 

H(x) > 1.3. 

’ To obtain temperatures in centigrade, multiply by 20. 
b The values for E and 8 are based on a stress scale of 10sP, an accumulation rate of 1 m/yr, a typical 

stretching of 1 km/yr, a thickness of 2000 m, and an ice density of 918 kg/m’. 
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The final relation (2.4) accounts for mass balance at the surface, and the function 
A(x, H) gives the accumulation and ablation (net snow accumulation or melting of 
ice) at a given position and height. Morland and Smith’s choice for this function is 
also given in Table I. 

Our attention now turns to the boundary conditions. 

A. Basal Conditions 

The conditions at the bottom (z = 0) of the ice sheet are that there is no drainage, 
and the geothermal flux through the base is known. In equations, these two con- 
ditions are, respectively, 

and 

W(x, 0) = 0 (2.6) 

TJx, 0) = - G(x). (2.7) 

A sliding law relating slippage (high basal shearing) U(x, 0) at the base to 
pressure gives a relation of the form 

U(x, 0) = U,(m), fw)), (2.8) 

Morland and Smith’s [27] choice of parametric functions for G and UF, and in fact 
all model parameters and specified functions are collected in Table I. The drag coef- 
ficient pUREFp(H) was proposed by Morland, Smith, and Boulton [28] on the basis 
of Greenland ice sheet data. The value of ~Rnr in Table I(b) is, however, smaller by 
a factor of about 100 than that suggested in [28]. By our choice, sliding becomes 
the dominant process. We were forced to make this modification in view of proper- 
ties of the Morland-Hutter shallow ice model. Reasons will be given in Section 5. 

B. Free Surface Condition 

At the surface, we assume that the temperature is a prescribed function T, of 
height and position. Thus at the surface 

T(x, W)) = TAX, Wx)). (2.9) 

C. At the Ice Divide 

Mathematically speaking, if the horizontal velocity U(x, z) is continuous and, in 
the vicinities of the left and right extremes, flows towards these extremes, then there 
must be at least one continuous curve (not necessarily vertical), running from the 
base to the surface, along which the horizontal velocity U is zero. Such a curve is 
spoken of as an “ice divide.” In our prototypical study here, for convenience and 
following Morland, we have assumed that the accumulation function A(x, H) is 
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symmetric in x about x = 0. This implies that the ice sheet is symmetric about 0, 
and the divide is at zero and is vertical. That is, 

U(0, z) = 0, O<zGH(O). (2.10) 

(This condition can also be shown to hold at the divide, regardless of symmetry, as 
a consequence of the shallow ice approximation). Furthermore, from symmetry 
follows the conclusion that at the divide, the surface slope must be zero: 

H’(O)=O. (2.11) 

More can and must be said about conditions at the ice divide, because our com- 
putational strategy differs from that suggested by Morland [24] most significantly 
in that we use the ice divide as a boundary condition. (The reason for this variation 
is explained in the section to follow.) The gist of the situation is that to begin our 
computations at the ice divide, for any specified divide height H = H(O), we must 
somehow find the temperature T(0, z), the vertical velocity W(0, z), and the second 
derivative H”(0) of the surface at the divide. In view of (2.10), at the divide the 
model now becomes an ordinary two-point boundary value problem the one dif- 
ferential equation of which is 

pTZ, = WTZ (2.12a) 

in the variables T(0, z) and W(0, z), with boundary conditions 

and 

WI H(O)) = TAO, H(O)) 

TAO, 0) = - G(O), 

W(0, 0) = 0, 

W(0, H)= -A(O, H) 

Toward obtaining a second differential equation, note from (2.1) that 

(2.12b) 

U(x, z) = UAH(x), H’(x)) + j; g(z(x, z’)) a( T(x, z’)) dz’. (2.13) 

Differentiate this expression with respect to x and note that the incompressibility 
equation (2.2) gives us 

Ux(O, z) = - W,(O, z) = f [a( T(0, z’)) g’(0) z, dz’ 

+ C~A-(Hb), H’(x))ll,l,=o. (2.14) 

In this conclusion, we have used that symmetry implies that Z-Z’(O), and thus also 
the stress $0, z), defined in (2.5), must be zero, and any sensible creep function g(r) 
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such as Morland’s, in Table I, must be zero when the stress is zero. In this fashion 
we conclude that a’( 7’) TX g(z)/,, 0 = 0. Now integrate (2.14) by parts, with respect 
to z, and use the surface condition (2.4), with U(0, H) = 0, to conclude that 

A(0, H(O)) = -H”(O) 
C 

1” a(T) g’(O)(H- z)* dz 
0 

E2 
+ PREFi3W)) 1 . 

(2.15) 

From this expression, we obtain H”(O), a term which will be required in our 
marching procedure. With (2.12a), (2.14), and (2.15), and boundary conditions 
(2.12b), we have all we need to find T(0, z), W(0, z), and H”(0). This completes the 
specification of the boundary conditions at the divide. 

D. Steady-State Ice Mass 

The final condition required for the “steady-state” model is that the net 
accumulation be zero (or else mass conservation is defied). Mathematically, we thus 
have 

s 

.XR 
A(x, H(x)) dx = 0. (2.16) 

0 

Values of the accumulation function A(x, H) can be negative, to account for 
“ablation” (i.e., melting, calving, and perhaps, evaporation). 

A careful derivation of the foregoing equations from first principles is given by 
Morland [24] and by our companion paper [IS]. 

3. THE COMPUTATIONAL STRATEGY 

This section reveals the details and properties of our specific numerical dis- 
cretization of the ice sheet model. However, to motivate the technique, which might 
otherwise appear to have some arbitrary facets, some obstacles encountered in our 
investigation are first reviewed. 

While containing no numerical results, Morland [24] outlined a plan of attack 
which we did find useful. However, he had reduced (2.16) to an equivalent end con- 
dition and proposed solving the problem by marching from the snout xR. One may 
readily confirm that this entails solving the heat equation (2.3) in what amounts to 
the reverse time direction, a task known to be notoriously unstable, since the heat 
equation is irreversible in time. Our central contribution to this computational 
strategy is to propose solving by marching out from the divide x = 0. In this direc- 
tion, the heat equation is stable. Since Morland’s boundary conditions are sym- 
metric in x about 0, solution of the equations in the region to the right of the ice 
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divide yields a complete description of the ice sheet. Our plan involves using the 
divide as a boundary condition, and marching in the direction of increasing x, until 
the surface meets the basal level, z = 0. It is perhaps useful to emphasize that this 
alternative computational idea does not involve any modelling assumptions beyond 
Morland’s, but does entail squeezing as much information as possible from his 
model at the divide, as we have in point C of the preceding section. 

Whereas we have spoken of “marching,” it is clear that the ice sheet problem is in 
fact a boundary-value problem, and conditions at all domain points must be 
satisfied simultaneously. We account for this by regarding the height H(0) at the 
divide as an unknown to be found, and by using what essentially amounts to a 
“shooting’? method: For any fixed divide height H, the model (2.1)-(2.9), subject to 
all boundary conditions save (2.16), has a unique solution. We repeatedly calculate 
such solutions, iterating on the value of H(0) until the net accumulation condition 
(2.16) is satisfied. When this happens, we have the ice sheet solution; all the boun- 
dary conditions are satisfied. The secant method (e.g., Szidarovszky and Yakowitz 
[32], Sect. 5.11) was employed to direct iterations on H(0); the function to be 
zeroed was the net accumulation value in (2.16), namely 

F(H) = j:‘(H) .4(x, H(x)) dx. (3.1) 

In addition to the task of viewing the glacier model so that stable marching could 
be undertaken, another challenge appeared as soon as our computer code was 
tested; we should have anticipated this problem. We found that our estimates of the 
surface slope H’(x), as computed from (2.4) oscillated wildly. A glance at this 
equation, which is equivalent to 

H’(x) = W, H(x)) + 0, H(x)) 
w, H(x)) ’ (3.2) 

should have made us wary of subtractive cancellation error. Near the divide, the 
magnitudes of Wand A agree to one or two significant places, and so discretization 
error alone can easily generate a relative error of H’(x) on the order of several per- 
cent. A slight error here gets amplified at the next step, because in (2.1), g(z) is very 
sensitive to r = - H’(H - z). Yet computation of the surface slope was pivotal to 
our ice sheet marching strategy. The alternative to marching is simultaneous 
solution to some discretization of the ice sheet model, and this is undesirable 
because it involves solving a nonlinear equation of several hundred variables, and 
simultaneous solution is further complicated by lack of prior knowledge as to where 
the surface boundary H(x) actually lies. 

The device we employed to stabilize this calculation is a crude feedback control 
technique such as one might use to force some trajectory to follow a desired path in 
the presence of noisy measurements. The feedback technique uses as performance 
measure the difference between the actual and desired variable values, and adjusts 
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the control variable (in our case a single real number) according to whether or not 
the current measure is an improvement over the last iteration. In sensitive 
situations, one makes sure that the change at each stage is “moderate” to avoid 
overshoot, hunting, or outright loss of control. 

In our case, in view of the surface boundary condition (2.4) the performance 
measure was naturally taken to be 

Fit(x) = W’(x) - ( Wx, H(x)) + A(x,W(x))lW, H(x))1 (3.3) 

and at each step, H’(x) is adjusted according to the rule 

H’(x + Ax) = H’(x) + AXH”(X), 

where Ax is a discretization step size and 

H”(x + Ax) = H”(x) + C Ax. (3.4) 

In (3.4), C is a fixed constant and the sign is chosen to be the same as that of the 
previous step if Fit(x) < Fit(x - Ax). Otherwise the opposite sign is selected. The 
adaptive rule above seemed warranted because the direction of the effect of a 
change in H” cannot always be predicted. The sign of the change of W/U with H 
seems to depend on their relative magnitudes. 

The feedback device just described appears to be sufficiently effective for our 
needs; for a wide range of ice sheet parameters, the function Fit(x) is less than 0.05 
throughout the computation, indicating that control was maintained. When the ice 
sheet parameters were held fixed, the computed temperature and velocity field, as 
well as the ice sheet profile, were not very sensitive to variations of the mesh dimen- 
sions Ax and AZ. 

The Marching Algorithm 

Presume the finite difference mesh step size Ax and AZ as well as the divide height 
H(0) has been selected. Let x(j) = j Ax and z(k) = k AZ. Terms like Tj,k will be used 
to denote our estimates of Tat positions (x(j), z(k)). It is reasonably apparent how 
the two-point boundary value problem (2.12a, 2.12b) for the ice divide temperature 
T(0, z) and vertical velocity W(0, z) may be solved. (We employed 
“quasilinearization” (e.g., Szidarovszky and Yakowitz [32]) to solve ordinary non- 
linear finite difference two-point boundary value-problems such as is engendered by 
a discretization of the above equation, but readers will probably have their own 
favorite methodology). Once the solution is found, then a Riemann sum 
approximation of the integral in (2.15) will give us H”(0). (Recall that H’(0) = 0 at 
the divide.) 

Now we define the recursive marching step. Presume that for a fixed j, we have 
already computed Hi, Hi, H,“, and { Tj,,k, UjTk, and Wj,,k}, 1 < k < N, with N = 
int(Hj/Az)). We give the recursion for finding the associated approximations atj+ 1. 
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The symbol V will denote the divided forward difference operator in the vertical 
direction: For any mesh function Qik, 

VQjk = CQj,k + t - Qjk)/Az. 

The next surface height is given by 

Hj+,=Hj+H;Ax. (3.5) 

For the temperature relation (2.3) and after approximating derivatives by the 
appropriate order of divided forward differences, we have 

Tj+I,k= Tj.k+$ [~‘~+t,k-t- Wj,kVTj+t,k 

0 

+ ‘tTj+ I,k) qbj+ l,k)l. (3.6) 

This finite difference method is effectively the “backwards implicit approximation” 
for parabolic partial differential equations. It is known (e.g., Lapidus and Pinder 
[21, Sect. 4.521) to be stable according to the Von Neumann criterion, regardless 
of mesh ratio AX/AZ, for the linear heat equation. Other possible discretizations 
were not investigated. Equation (3.6) is subject to the boundary conditions (2.9) 
and (2.7) which we restate in discretized form: 

T’,N = T,Axj, Hj), VTj+l,o= - G(x(j+ 1)). (3.7) 

Quasilinearization served to solve this two-point boundary value difference 
equation in the independent variable k. 

A Riemann sum approximation of U, in light of (2.1) is provided by the recursion 

uj+ l,k+ 1 = uj+ l,k + AZ 4Tj+ 1.k) &j+ ~,k). (3.8) 

starting with Uj + I,0 = VA Hi + 1, HJ, i). Once these horizontal velocities are known, 
(2.2) allows us to find the increments 

Wj+I,k=Wj+l,k-t-AZ.VUj,k, (3.9) 

and this, coupled with the boundary condition (2.6), restated as Wj+ 1,o = 0, yields 
all the vertical velocities at j + 1. 

The new ((j+ 1)th column fit is calculated in terms of Uj+l,N, Wj+l,N, and 
A(x(j+ l), Hj+ I) from (3.3). Then Hj’, 1 is calculated as in (3.4) and attendant dis- 
cussion. 

This completes the detailed discussion of our numerical procedure. The marching 
halts when Hj+ 1 reaches 0 (ground). The Riemann sum xi ,4(x(j), Hi) Ax 
approximation of the net mass term on the left side of condition (2.16) is 
accumulated as the calculations proceed and this constitutes the output of the 
procedure. The divide height H(0) is adjusted according to the secant method until 

581/66/l-IO 
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this net accumulation is tolerably close to 0, as required by the zero mass flux con- 
dition (2.16). 

Consistency and Convergence 

We claim that the order of consistency, in the terminology of Meis and Mar- 
cowitz [22], e.g., is one, provided AZ = O(Ax*). Let us outline the basis for this 
claim. In brief, our marching procedure calculates temperature, velocities, and sur- 
face slope at the (j+ 1)th column in terms of data at thejth column. We must show 
that if we have given initial conditions T(x, z), H(x), H’(x), U(x, z), and W(x, z) at 
x = x(j), then the actual solution values T(x,+ 1, zk) and Tj+ ,,k their 
approximations obey the relation 

max (ITj+,,k-T(Xj+,,~k)l)=~(~x*). 
14k<N 

Further, Uj+ I = (uj+ I,k}r=O similarly has O(dx*) local error. We have used here 
(and will use later) notation like Tj to denote the column vector { c,,k}tZO. 

First, examine the temperature T,, , . Equation (3.6) takes the form 

Tj+ 1.k = Tj,k + dXFk(Tj+ 1 ; Uj, Wj, Hi, Tj, Hj), O<k<N, (3.10) 

where the values Tj+ 1 are computed so as to satisfy the linear two-point boundary 
value problem (3.6)-(3.7). The ideal coefficients depend on the unknown Uj+ 1, 
Wj+ly Hi+,, and Hj+l, whereas we have used temperature, velocity, and surface 
data from the x(j) column. But if these functions are twice-continuously differen- 
tiable, then the error so induced is O(dx), and from continuity results such as the 
comparison theorem in Birkhoff and Rota [2], we can anticipate this O(dx) error 
in difference equation coefficients to translate to O(dx) error in the computed 
solution T, + 1 over a bounded domain. From these considerations, and the order of 
consistency demonstration in Meis and Marcowitz [22, p. 801 for the linear case, 
we have concluded that the order of consistency of the temperature is O(dx*). This 
argument can be put a bit more forcefully by noting that in matrix notation, the 
backwards implicit parabolic difference equation takes the form 

Tj+I=Tj+dxQ(Tj+I, Wj+l,Uj+l, Hj+l,H~+,)Tj+l, (3.11) 

where the matrix Q absorbs the coefficients and inhomogeneous parts of the 
backwards implicit parabolic equation. This can be expressed as 

Tj+I=(I-dxQ(Tj+l,Wj+l,Uj+I,Hj+l,H~+I))-'Tj. (3.12) 

Now in our calculations, to avoid nonlinearity of the two-point boundary-value 
problem, we actually use Q(T,, Wj, Uj, Hi, Hi) in place of the Q matrix function in 
(3.11). But the difference of these matrices is O(dx), which translates through the 
usual matrix perturbation relations (e.g., Szidarovszky and Yakowitz [ 32, 
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Sect. 6.31) to an O(dx*) perturbation in the solution Tj+ r. (The square stems from 
the observation that the dx perturbation in Q itself gets multiplied by Ax in (3.12).) 

The horizontal velocity Uj+ r is updated according to (3.8), which is the rec- 
tangular quadrature formula (Davis and Rabinowitz [5 3). It is readily established 
that under our differentiability assumptions, the rectangular rule global error is 
O(Az), which, recalling that AZ = O(Ax*), establishes that our error in Vi+ I is 
U(Ax*). This term also reflects the dependency of Vi+ I on the error in Tj+ 1. 

In computing Wj+ 1 through (3.9), we loose an order in the error because of the 
Ax term in the denominator. Thus the local error of Wj+ 1 equals O(Ax). Finally, 
the error of HJ+ r, as computed from (2.4) must, in view of arithmetic perturbation 
relations (e.g., Szidarovszky and Yakowitz [32, p. 111) be the minimum of the 
error orders of Uj+ I and Wj+ 1, namely 1. 

Whereas the local errors of Tj+ 1 and Uj+ 1 are O(Ax*), and so satisfy the 
definition of consistency of order 1, the local error of Wj+ 1 and Hi+ I has order 1. 
But this data propagates only through its effect on the Q matrix defined above, and 
in view of our earlier argument, we can stand O(Ax) error here and still get O(Ax*) 
in the successive T and U vectors. This argument can be sharpened by referring to 
the Euler method for ordinary differential equations R =f(x). Here one solves 

X n+ 1 =x, + &f&J + A,, 

where A,, can collect all locally induced errors. In our case, A,, = O(Ax*). From 
Theorem 8.1 of Szidarovszky and Yakowitz [32] (especially Eq. (8.19)), one sees 
that order 1 consistency and convergence will still be maintained. 

In view of these facts, we claim that the order of consistency is 1, and under cer- 
tain regularity assumptions, in view of the proof of the Lax-Richtmayer theorem 
(Meis and Markowitz 1122, p. 621) in the linear, constant coefficient case, one can 
hope that the order of convergence of the solution is likewise 1. We do not deny 
that certain delicate issues such as the nonlinearity of our equation in the face of the 
linearity requisite for the above convergence statement and the regularity needed in 
the discretization scheme have been glossed over here. A referee has noted that the 
structure of the ice sheet model somewhat resembles that of the Stefan problem of 
thermodynamics (e.g., Friedman [ 10, Chap. 81). Thus perhaps more rigorous 
analysis along the lines of [20] is possible. Our asserted rate is the same as [20] 
derives for the Stefan problem. 

4. A NUMERICAL SOLUTION TO THE ICE SHEET MODEL 

The aim of this brief section is to lay claim to our being the first to provide a 
numerical solution to the full Morland-Hutter ice sheet model. The problem set 
forth in the preceding section is identical to that posed by Morland [24], with 
exception to the sliding law. This modification was necessary to conserve mass 
balance near the divide. 

The specific problem functions and parameters were presented in Tables Ia and 
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Ib, respectively. We have found it more instructive to contemplate our solutions 
through (computer-generated) graphs than tables. Fig. 2 portrays the temperature 
field as well as the ice sheet profile. Pause to observe that throughout most of the 
ice sheet, the minimal temperature along vertical segments occurs in the interior. 
This and the occurrence of maximal temperatures near the base constitute a tem- 
perature inversion phenomenon which is known to exist in actual glaciers and ice 
sheets. 

The computed velocity field is presented in Figs. 3 and 4. The’curve denoted as 
(a) in Fig. 3 gives the net horizontal velocity, and the second (curve (b)) shows the 
“gliding velocity component. This is the difference between the horizontal velocities 
at the location indicated within the ice sheet and the basal velocity. The basal 
velocity is due to stress-induced sliding of the ice sheet over the bed. Evidently in 
this case, absolute values for velocities are large and only a small portion of the 
motion is due to the internal deformation of the ice. This stems from the small 
value of pREF used for this computation. Other more realistic situations do exist; 
the relevant analysis given in our companion paper [18] shows that by increasing 
basal drag, total velocities can be reduced and internal deformation then can con- 
tribute significantly to the total velocity. The no-slip condition cannot, however, be 
fully achieved within the shallow ice approximation, for reasons to be offered in 
Section 5. The final curve gives the velocity in the downward direction. Some had 
argued that near the snout (x,), the vertical velocity might be upward due to melt. 
For here the accumulation is negative. Within the parameter ranges we 
investigated, the Morland-Hutter model seems clearly committed to saying that 
this velocity reversal does not necessarily occur: The slope H’ and surface horizon- 
tal velocity in (2.4) are more than enough to balance negative accumulation, 

Figure 4 plots the velocity field (horizontal and vertical components). To our 
eyes, the flow seemed consistent with common sense. 
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FIG. 2. Plots of isotherms and temperature profiles of the solution. 
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FIG. 3. Horizontal and vertical ice velocity profiles. Top of scales is in meters per year. 

5. INTERACTIONS BETWEEN COMPUTATION AND MODELLING 

Some of the implications of our methods and results with respect to theoretical 
glaciology will be outlined. Here our intention is only to argue that not only can we 
obtain specific solutions to specific problems, but in so doing, we uncover general 

‘vxR- 
VELOCITY VECTORS 

FIG. 4. Vector plot of the ice velocity. 
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strengths and weaknesses of current theoretical glacier models. In a sense, then, our 
studies involve interaction between modelling and computing. The glaciological 
motivations and conclusions are explained more fully in the companion study by 
Hutter et al. [ 181 intended for an audience of glaciologists. 

Prior to our numerical studies of cold ice sheets under influence of external boun- 
dary conditions, our knowledge about the role and relative influence of the problem 
parameters and boundary conditions was inadequate. One had to be content with 
ad-hoc and plausibility arguments. We cite a few examples. 

(1) While it was recognized that the accumulation rate function is the 
dominant factor determining the extent and geometry of the ice sheet, the role of 
temperature was only surmised. There was a question as to whether it had 
significant influence. 

(2) Still with regard to the effect of temperature, it was clear that surface tem- 
perature and geothermal flux has a prime influence in determining the temperature 
field. The general nature of the effect of the diffusion term /IT,, and the vertical 
advection term WT, in (2.3) could be anticipated (for reasons offered in Hutter 
[ 15, pp.17&174]). However, the influence of advection term UT, in (2.3) and dis- 
sipation (the rightmost term in (2.3)) was dilIicult to anticipate from nonnumerical 
considerations. 

(3) The significance of the sliding of the ice sheet on its bed relative to 
viscous deformation of the ice within the ice sheet was not even conjectured. It was 
anticipated that the creep phenomena are coupled in a complicated manner to the 
thermal field through the rate function a(T) and the creep response functions g(r) 
and 48r2), so that the relative magnitudes of internal shearing and basal slip have 
effects which are hard to foresee. 

1 Range of values for different runs 5 
I I 

FIG. 5. Plot of ice sheet extents divide heights vs. sliding friction parameter. 
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To make a long story short, our computational approach, where we only set out 
to find the implications of the model, will end up forcing us and other glacier 
theoreticians to revise the model. 

In the two subsections that follow, main qualitative conclusions reached from our 
study are outlined. These conclusions are among many, and they are offered here 
largely to illustrate the benefits of computational strategies to modeling of complex 
nonlinear systems. 

Delineation of the Most Injluential Ice Sheet Parameters 

It was found by varying E, 8, a, /I, over glaciologically reasonable ranges that the 
ice sheet profile depended numerically on ~,,r/e’ but, not significantly on a, /I, and 
0. Figure 5 shows this dependence. In this figure, error bars mark the range of 
values for x, and H,, respectively, which were obtained with different values of the 
parameters (more than 75 runs). The width of the error bars is more the reflection 
of the accuracy of our numerical computations than an indication of a dependence 
on other variables. To reach this conclusion we chose values for the ice parameters 
as follows: 

10-4<&< 10-1, lo-*<ad 1 

10-4<8< 102, lo-*</3<5510-’ 

1o-9 G/.&f< lop5 (5.1) 

and used the accumulation rate function of Table I. 
In Fig. 5, we have plotted and interpolated heights H(0) and extents xR as 

functions of various values of ~JE*. As anticipated, the more “slippery” the base is, 
the more spread out the ice sheet will become. 

Discovery of a Weakness of the Morland-Hutter Theory 

By considering ranges of parameters thought physically possible, in Section 2 of 
the companion paper we established that necessarily 

i!Ef < 0.2. 
E2 

(5.2) 

The surprising and distressing implication is that this allowable region of the ratio 
is smaller than glaciologists postulate. Physically, one would think that the “no 
slip” condition of uFN -0 should be permissable. But this requires vastly larger 
values of &.s* (since uF is proportional to the inverse of this quantity). This forces 
us to either reconsider what is reasonable, or push on to a different ice sheet model. 
Parenthetically we remark that the limitation (5.2) was only uncovered when we 
attempted numerical solution by marching from the divide. An obvious step along 
this latter path would be to discard the so-called “reduced model” which allowed 
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Hutter and Morland to pass from an elliptic to parabolic (with respect to x) heat 
equation for “shallow” ice sheets. The elliptic model at the divide has a stress term 
that could allow circumvention of (5.2). 
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